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Introduction

Recent years have witnessed a vast development of nonlinear time series
techniques (58, 24). From a parametric point of view, the Smooth Transition (Auto-
)Regression, ST(A)R, proposed by (13)1 and further developed by (40) and (56),
has found a number of successful applications; see (61) for a recent review. In the
time series literature, the STAR model is a natural generalization of the Threshold
Autoregressive (TAR) models pioneered by (57) and (59).

On the other hand, nonparametric models that do not make assumptions
about the parametric form of the functional relationship between the variables to
be modeled have become widely applicable due to computational advances. For
some references on nonparametric time series models, see (29), (30), (26), and
(21). Another class of models, the flexible functional forms, offers an alternative
that leaves the functional form of the relationship partially unspecified. While these
models do contain parameters, often a large number of them, the parameters are
not globally identified. Identification, if achieved, is local at best without imposing
restrictions on the parameters. Usually, the parameters are not interpretable as they
often are in parametric models. In most cases, these models are interpreted as
nonparametric sieve (or series) approximations (14).

The artificial neural network (ANN) model is a prominent example of such a
flexible functional form. It has found applications in a number of fields, including
economics, finance, energy, epidemiology, among others. Although the ANN model
can be interpreted as a parametric alternative (37, 60, 46), its use in applied work
is generally motivated by the mathematical result stating that, under mild regularity
conditions, a relatively simple ANN model is capable of approximating any Borel-
measurable function to any given degree of accuracy; see, for instance, (22), (17),
Hornik, Stinchombe, and White (1989,1990), (63), (23), (15), and (25).

The above mentioned models aim to describe the conditional mean of the
series. In terms of the conditional variance, Engle’s (1982) Autoregressive Condi-
tional Heteroskedasticity (ARCH) model, Bollerslev’s (1986) Generalized ARCH
(GARCH) specification, and the Stochastic Volatility (SV) model proposed by (55)
are the most popular alternatives for capturing time-varying volatility in time series

1(13) called the model Smooth Threshold Auto-regression.
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data, and have motivated the development of a myriad of extensions (50, 44, 2, 3).
However, when the attempt is to model the entire conditional distribution, the

mixture-of-experts (ME) proposed by (34) becomes a viable alternative. The core
idea is to have a family of models, which is flexible enough to capture not only
the nonlinearities in the conditional mean, but also to capture other complexities
in the conditional distribution. The model is based on the ideas of (49), viewing
competitive adaptation in unsupervised learning as an attempt to fit a mixture of
simple probability distributions into a set of data points. (36) generalized the above
ideas by proposing the hierarchical mixture-of-experts (HME). Both ME and HME
have been applied with success in different areas. For example, (62) showed an
application to financial time series forecasting. Good applications of HME in time
series are also given by Huerta, Jiang, and Tanner (2001,2003). Recently, Carvalho
and Tanner (2002a,b) proposed the mixture of generalized linear time series models
and derived several asymptotic results. It would worth mentioning the Mixture
Autoregressive model proposed by (66) and its generalization developed in (67).

In this paper we contribute to the literature by proposing a new class of mix-
ture of models that is based on regression-trees with smooth splits. Our proposal has
the advantage of being flexible but less complex than the HME specification, pro-
viding possible interpretation for the final estimated model. Furthermore, a simple
model building strategy has been developed and Monte Carlo simulations show that
the it works well in small samples. A quasi-maximum likelihood estimator (QMLE)
is described and its asymptotic properties are carefully analyzed. The small-sample
properties of the QMLE are also evaluated via a Monte Carlo experiment.

The paper proceeds as follows. In Section 2 a brief review of the literature on
mixture of models for time series is presented. Our proposal is presented in Section
3. In Section 4, parameter estimation and the asymptotic theory are considered. The
modeling cycle is described in Section 5. Simulations are shown in Section 6, and
Section 7 presents some examples with actual data. Finally, Section 8 concludes.
All technical proofs are relegated to the appendix.

DBD
PUC-Rio - Certificação Digital Nº 0421015/CA


	Modelando Séries Temporais Não-Lineares Através de uma Mistura de Modelos Gaussianos Estruturados em Árvore
	Resumo
	Sumário
	Introduction
	Mixture of Models: A Brief Review of the Literature
	Model Presentation
	Parameter Estimation
	Asymptotic Theory

	Modeling Cycle
	Monte-Carlo Study
	Parameter estimation
	Specification Algorithm.
	Approximation Capabilities

	Examples
	Example 1: Canadian Lynx.
	Example 2: Brazilian Financial Dataset.

	Conclusions
	Referências Bibliográficas
	EM Algorithm
	Identifiability
	Stationarity and Geometric Ergodicity
	Proofs of Theorems
	Proof of Theorem 4.1 
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Lemmas



